LIFESTART Science Our journey to unlock the potential of dairy calves

J. Martín-Tereso, PhD

Manager Ruminant Research. Trouw Nutrition R&D

In 2012 Trouw embarked in a fascinating research journey

trouw nutrition

a Nutreco company

- More than 30 peer review publications
- 3 patent families
- 4 new products

New feed protocols and formulations

Glossary of terms

Hunger epigenetics

- "Hongerwinter" Dutch famine Amsterdam 1944/45
- Long term correlation with metabolic syndrome
- Great Chinese famine 1958 and Biafra 1968

Picture Christoph Bock, Max Planck Institute

• Effects mediated by difference in DNA methylation associated to perinatal environment

Picture Menno Huizinga

EPIGENETICS enter the equation PHENOTYPE = GENETICS + ENVIRONMENT

Lamarck's "I told you" moment came a bit too late

Jean-Baptiste Lamarck

Charles Darwin

Adaptations can indeed persist through generations

Adaptive Fetal Programming in **Ruminant Livestock** F0 Generation Maternofetal Stress Environmental Allison N. Vautier and Caitlin N. Cadaret* (heat, cold, altitude) Nutritional Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States (overnutrition, undernutrition) Prolonged Illness Mismanagement F1 Generation Reduced & Inefficient Growth Increased Death Loss Aberrant Metabolism Altered Endocrine Regulation Poor Body Condition ntergenerational Programmin F1 Generation Females **Epigenetics in germline?** And/or rogrammed maternal physiology And/or Persistent environmental insults Subsequent Generations Reduced & Inefficient Growth Increased Death Loss Aberrant Metabolism Altered Endocrine Regulation Poor Body Condition

Long-Term Consequences of

Seed priming of plants aiding in drought stress tolerance and faster recovery: a review

K. P. Raj Aswathi¹ · Hazem M. Kalaji² · Jos T. Puthur¹

Vautier and Cadaret 2022

trouw nutrition a Nutreco company

Dairy calves, the perfect thrifty phenotype model

"Perinatal nutrient deprivation sets adult metabolism for scarcity not for abundance"

What are the biological needs of a calf?

Dairy calves

125I/250I/500I Weaning at 6/8/12 weeks

a Nutreco company

- Colostrum
- Health
- Peer and maternal contact
- Ad libitum milk
- Bovine milk composition
- Gradual weaning

Biological reference

1.500l Weaning at 6 months

Survey Trouw Nutrition Great Britain, 2022

Milk's effect on global human health

- Prospective cohort study 21 countries from five continents (PURE)
- From 2003 to 2028. 136.000 subjects, 7.000 deaths, 6.000 cardiovascular events

Consumption of only whole-fat dairy

Consumption of both whole-fat and low-fat dairy

Dehghan et al. The Lancet 2018

Adjusted for age, sex, education, urban or rural location, smoking status, physical activity, history of diabetes, family history of cardiovascular disease, family history of cancer, and quintiles of fruit, vegetable, red meat, starchy foods intake, and energy.

Bovines contribute to our food security

Milk and beef carcass available estimated by production minus exports. Food available without accounting for food waste. Meat in carcass assumed 65%. Daily calorie requirement assumed 2250kcal and protein requirement 52g.

Milk from a nutritional angle

... is the ultimate balanced food

A complex food in which nothing is left to chance

- Nutrient transfer role
- Signaling role
- Unique composition by species

Table 1. Summary statistics of milk traits

Trait	Mean	Minimum	Maximum	CV, $\%$
Yield, kg/d				
Milk	27.45	3.70	51.00	27.87
Lactose	1.31	0.17	2.61	28.57
Composition, %				
Lactose	4.76	4.06	5.46	3.36
Casein	2.66	1.84	3.53	10.53
Protein	3.38	2.22	4.53	11.24
Fat	4.02	2.10	5.94	15.67
Freezing point, °C	-0.525	-0.552	-0.498	1.90
SCS	2.92	-3.64	10.22	60.27
Mineral content, mg/kg				
Calcium	1,317.00	823.10	1,821.15	12.03
Phosphorus	928.76	600.68	1,258.75	11.48
Magnesium	138.47	62.29	193.87	19.14
Potassium	1,505.24	1,102.00	1,909.11	8.54
Sodium	427.05	273.52	581.59	11.75

Costa et al. 2019

• Much older and evolutionarily conserved than placental reproduction

Yes, an older reproductive mechanism

Nutrient supply seems simple, signaling is not

Replacing human milk with bovine milk ingredients

CHOP study: Prospective randomized/cohort 990 infants 2002-2008 nutrient intakes and growth up to age 2 Health monitored up to age 8

Rapid gain weight from high protein intake is linked with childhood obesity

Koletzko et al. 2009

Figure: Ärzteblatt International

Replacing milk is not just putting nutrients in a liquid feed

- Physicochemical properties
- Digestibility
- Glycaemic signals
- Digestion dynamics
- Barrier function
- Protein quality
- Acid/base metabolism
- Gastrointestinal ecology

SETS LIFE PERFORMANCE STORY (even causal) evidence of benefits

Onset of puberty⁴ Survival until 1st calving⁶ Reduced age at 1st calving^{1,3} Increased milk production^{1, 2, 3, 4, 5}

But how???

¹Bar-Peled et al. 1998; ²Drackley et al. 2007; ³Raeth-Knight et al. 2009 ⁴Davis-Rincker et al. 2011; ⁵Soberon et al. 2012; ⁶Van de Stroet et al. 2016

Preweaning growth and 1st lactation milk production

a Nutreco company

LifeStart mechanism and metabotype hypothesis

Grams of daily gain that turn into future litres of milk

How does this happen?

- Simply through development?
- Or really through metabolic programming?

Nutrients or signals?

- Nutrient building blocks?
- Signals messaging?

Research toolset

- Nutrient digestibility
- Total nutrient balance
- Transcriptomics
- Metabolomics
- Insulin sensitivity
- Abomasal emptying
- Intestinal permeability
- Respiration chambers
- Histology
- Total body composition

Enhanced milk supply and organ development

	Restricted (n=6)	Enhanced (n=6)	P value
Pancreas, g	32.90	29.47	0.61
Pancreas, % of BW	0.06	0.04	0.11
Liver, kg	1.35	2.35	< 0.01
Liver, % of BW	2.23	2.84	< 0.01
Mammary gland, g	75.48	337.58	< 0.01
Parenchyma, g	1.10	6.48	< 0.01
Parenchyma, % of BW	0.002	0.008	< 0.01

(Soberon and Van Amburgh, 2011)

Change in gene expression profiles

	Changed (P < 0.01)			
Mammary	654			
Fat	1045			
Liver	176			
Bone marrow	435			
Muscle	651			
Pancreas	103			

Cornell University

trouw nutrition

a Nutreco company

PLOS ONE

RESEARCH ARTICLE

Nutrient supply alters transcriptome regulation in adipose tissue of pre-weaning Holstein calves

Leonel N. Leal^{1©}*, Josue M. Romao^{2©}, Guido J. Hooiveld³, Fernando Soberon⁴, Harma Berends¹, Mark V. Boekshoten³, Michael E. Van Amburgh⁵, Javier Martín-Tereso¹, Michael A. Steele²*

WAGENING

J. Dairy Sci. 102:1–13 https://doi.org/10.3168/jds.2018-15699

© 2019, The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Preweaning nutrient supply alters mammary gland transcriptome expression relating to morphology, lipid accumulation, DNA synthesis, and RNA expression in Holstein heifer calves

K. S. Hare,¹* L. N. Leal,²* J. M. Romao,³ G. J. Hooiveld,⁴ F. Soberon,⁵ H. Berends,² M. E. Van Amburgh,⁶ J. Martín-Tereso,² and M. A. Steele¹†

¹Department of Animal Bioscience, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada ²R&D, Trouw Nutrition, PO Box 299, Amersfoort, 3800 AG, the Netherlands

³Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Alberta, AB T6G 2P5, Canada

⁴Department of Agrotechnology and Food Sciences, Division of Human Nutrition and Health, Wageningen University, PO Box 17, Wageningen, 6700 AA, the Netherlands

⁵Trouw Nutrition USA, Highland, IL 62249

For quality of life

⁶Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14850

WAGENIN

Trouw Nutrition R&D, Leal et al., 2016, 2017, 2018; Romão et al., 2018; Hare et al., 2019.

Lean growth vs lipid distrophy

Van Amburgh, 2011

- Fat functionality
 - Immune competence
 - Thermoregulation
 - Energy homeostasis

Trouw Nutrition R&D, Leal et al., 2016, 2017, 2018; Romão et al., 2018; Hare et al., 2019.

Longitudinal study at the Trouw Nutrition Dairy facility (NL)

Preweaning plane on 1st and 2nd lactation

ltom	Treatment		CEN/	P-value	
item	ELE	RES	SEIVI	Treat	Treat x WIM
First lactation (n=64 cows)					
Dry-matter intake, kg/d	19.7	19.0	0.2	0.01	0.62
Milk yield, kg/d	29.1	29.1	0.4	0.98	0.25
Fat-protein corrected milk, kg/d	30.8	29.9	0.2	0.01	0.91
Milk composition					
Fat, g/d	1296	1213	9	<0.01	0.87
Protein, g/d	995	996	10	0.95	0.73
Lactose, g/d	1363	1368	18	0.86	0.96
Body weight, kg	585	593	7	0.44	0.96
Body condition score, 1-5 scale	3.21	3.30	0.02	<0.01	0.46
Second lactation (n=45 cows)					
Dry-matter intake, kg/d	23.3	23.0	0.3	0.50	0.94
Milk yield, kg/d	34.7	33.3	0.7	0.23	0.12
Fat-protein corrected milk, kg/d	36.8	35.5	0.5	0.12	0.38
Milk composition					
Fat, g/d	1536	1464	22	0.04	0.73
Protein, g/d	1208	1184	16	0.33	0.05
Lactose, g/d	1593	1545	32	0.35	0.23
Body weight, kg	649	665	8	0.20	1.00
Body condition score, 1-5 scale	3.04	3.17	0.04	0.08	0.68

Preweaning plane on survival

	Treat		
Item	ELE	RES	P-value
	(n = 43)	(n = 43)	
Survival 1 st calving			
% of total (n calving)	93% (40)	88% (38)	0.36
Survival 2 nd calving			
% of total (n calving)	77% (33)	65% (28)	0.07
Survival 3 rd calving			
% of total (n calving)	54% (23)	37% (16)	0.05
Survival 4 th calving			
% of total (n calving)	42% (18)	23% (10)	0.02
Survival 5 th calving			
% of total (n calving)	26% (11)	14% (6)	0.02
Survival 6 th calving			
% of total (n calving)	21% (9)	7% (3)	0.02
Survival August 2023			
% of total (n calving)	21% (9)	5% (2)	0.02

Trouw Nutrition R&D. Leal et al. under review

a Nutreco company

Cumulative production corrected by culling

a Nutreco compar

35.000 l in 3.3 lactations 10,600l/lactation vs 25.000l in 2.5 lactations 10,000/lactation

- More milk to sell
- Fewer heifers to raise

Energy metabolism of the calf

		ELE d2	ELE d49
	Biochemical	vs.	vs.
		RES d2	RES d49
	butyrylcarnitine	1.14	0.89
	butyrylglycine	1.08	0.42
	propionylcarnitine	1.06	0.57
	propionylglycine	1.02	0.24
	valerylglycine	0.97	0.14
	hexanoylglycine	0.97	0.70
	N-palmitoylglycine	1.06	1.10
	acetylcarnitine	1.10	1.28
sm	3-hydroxybutyrylcarnitine	1.14	1.16
ilo	hexanoylcarnitine	1.13	1.22
tal	octanoylcarnitine	1.05	1.41
Me	decanoylcarnitine	1.06	1.49
bid	laurylcarnitine	1.01	1.37
AG.	myristoylcarnitine	1.06	1.25
itty	palmitoylcarnitine	1.07	1.61
Fa	palmitoleoylcarnitine	1.05	1.24
	stearoylcarnitine	1.08	1.23
	linoleoylcarnitine	0.90	1.29
	oleoylcarnitine	1.05	1.26
	myristoleoylcarnitine	1.14	1.52
	suberoylcarnitine	0.83	0.94
	adipoylcarnitine	0.89	1.18
	carnitine	1.04	1.20
	3-hydroxybutyrate (BHBA)	1.09	0.39
	citrate	0.95	0.80
	aconitate [cis or trans]	0.92	0.86
cle	isocitrate	0.98	0.91
	alpha-ketoglutarate	1.08	0.91
C	succinylcarnitine	0.98	1.27
CA	succinate	1.08	0.85
T	fumarate	1.09	0.83
	malate	1.11	0.79
	tricarballylate	0.83	0.12
	2-methylcitrate/homocitrate	0.94	0.62

trouw nutrition

a Nutreco company

Increased β-oxidation capacity in LifeStart heifers

Pathway	Biochemical	바 LP	
	acetylcarnitine (C2)	1.12	
	3-hydroxybutyrylcarnitine (1)	1.09	
	3-hydroxybutyrylcarnitine (2)	1.03	
	hexanoylcarnitine (C6)	1.17	1
	octanoylcarnitine (C8)	1.16	
	decanoylcarnitine (C10)	0.97	
	cis-4-decenoylcarnitine (C10:1)	0.99	
Fatty Acid Metabolism	laurylcarnitine (C12)	0.82	
(/ logicarinance)	myristoylcarnitine (C14)	0.97	
	palmitoylcarnitine (C16)	0.88	
	stearoylcarnitine (C18)	0.87	6
	oleoylcarnitine (C18:1)	0.88	
	myristoleoylcarnitine (C14:1)*	0.84	
	suberoylcarnitine (C8-DC)	0.81	
	adipoylcarnitine (C6-DC)	0.97	
O and Kara Matchelland	deoxycarnitine	1.07	
Carnitine Metabolism	carnitine	1.14	6

- β-oxidation is key for energy production (Krebs cycle)
- Increased capacity for β-oxidation in LS heifers
 - higher carnitine
 - lower long chain acylcarnitines
 - Increase in short and medium chain acylcarnitines

Reduced ω -oxidation in Enhanced heifers

	1
Biochemical	LP
dimethylmalonic acid	0.87
3-methylglutarate/2-methylglutarate	0.89
2-hydroxyglutarate	0.88
adipate	0.82
3-carboxyadipate	0.85
2-hydroxyadipate	0.9
3-methyladipate	0.92
maleate	0.9
pimelate (heptanedioate)	0.92
suberate (octanedioate)	0.95
azelate (nonanedioate)	0.98
sebacate (decanedioate)	0.99
undecanedioate	0.97
dodecanedioate	0.94
hexadecanedioate	0.96
octadecanedioate	0.98
eicosanodioate	0.91
docosadioate	0.94

 Fatty acids can be also oxidized through ω-oxidation

Occurs mainly

٠

- mitochondria are overwhelmed
- β-oxidation is impaired

Lower @-oxidation in ENH heifers

 low adipate and other dicarboxylic fatty acids

Different metabotypes at 60 DIM....

...adaptations are still present in 1st lactation (metabolic programming)...

Trouw Nutrition R&D. Leal et al. under review

No effect on glucose tolerance at wk 4, 7 or 10

a Nutreco company

Trouw Nutrition R&D. MacPherson et al., 2016

Glucose response heifers

Trouw Nutrition R&D. Leal et al. under review

Glucose response cows (lactation)

Trouw Nutrition R&D. Leal et al. under review

Phenotypically, milk fat yield is higher

Change in body condition score is also higher

... so not at the expense of body reserves...

Conclusions from calf phase

- Clear dietary differences between the 2 treatments at d49
 - >45% of all metabolites
- Metabolic pathways are affected by the total amount of nutrients supplied and by the nature of the diet
 - ketogenic vs. glucogenic
- Dietary interventions can lead to profound metabolic adaptations
 - energy metabolism
 - organ development
 - microbiome

BIG CALF vs. SMALL CALF

Conclusions from heifer phase

- Differences in age at 1st AI can be explained by BW
- LifeStart heifers got pregnant earlier than Conventional heifers
- Preweaning feeding may have an effect on glucose/insulin metabolism at 12 months (FSIGTT)
- Metabolomics indicate that pre-weaning plane of nutrition can have carry over effects
 - energy metabolism (β-oxidation vs. ω-oxidation)
 - amino acid metabolism
 - microbial fermentation end-products

Conclusions from lactation

- Metabolism
 - Energy metabolism
 - Microbially derived metabolites
 - Protein metabolism
 - Insulin/glucose metabolism
- Breeding
 - Earlier 1st Al
 - Earlier pregnancy
 - Earlier 1st calving
- Lactation (until 180 DIM)
 - Greater fat yield and FCM
 - Lower BCS mobilization
 - Improved survival

Adapted from NRC, 2001

a Nutreco company

Restoring nutrient supply and signaling

2015

2023

Biological reference

- Increased survival in preweaning phase
- Improvements of fecal scores / therapeutical treatments
- Hormonal homeostasis (insulin-glucose metabolism)
- Possible to formulate based on FA profile
- High PUFA negative for calves
- Inclusion of dairy cream largely beneficial
- Improvement in fat digestibility and fecal scores
- Increased MR and starter intakes \rightarrow increased performance
- Enhanced rumen papillae / ileum villi development

Wilms, J. Trouw Nutrition R&D

Increasing the fat inclusion

Fat sources in milk replacer

Balancing FA

Restoring early weaning nutrient shortages

Adding fat to starters without compromising rumen development and function results in greater energy intake and growth

Biological reference

Restoring milk quality

When replacing milk... ...nothing can be left to chance...

Wilms, J. Trouw Nutrition R&D

- Water
- Physicochemical composition
- Carbohydrate fraction
- Fat fraction
- Protein fraction
- Functional components
- Minerals
- Vitamins

a Nutreco company

Trouw Nutrition R&D. Wilms et al. 2020

Replacing milk is an exercise of nutrition and circularity

Post weaning nutrient supply

Micro CMR composition

Macro CMR composition

Feeding plane

Ad lib feeding

New value, new values, new objectives, new solutions

Take home messages

- "LifeStart" is a true case of metabolic programming
- Restoring perinatal environment restores phenotypical potential
- Milk does not only transfer nutrients, but also imprinting signals
- Improving perinatal environment, is the single greatest opportunity to improve dairy productivity, efficiency, health, and sustainability

OUR PURPOSE

Feeding the Future

Thank you!